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ABSTRACT

This report is a partial documentation of the first series of model-scale tests
conducted 12/06-2/07, to evaluate the Axial Waterjet (AxWJ), Model 5662, on
the Joint High Speed Sealift (JHSS) hull platform. This document contains calm
water resistance and model-scale powering test results only.

Bare hull effective powers were determined for the AxWJ hull at three
displacement conditions. Appended effective power was determined for the
AxWIJ hull with the LDV waterjet nozzles installed, at design displacement. Bare
hull and appended effective powers for AxWJ were compared to those of the
JHSS Baseline shaft & strut (BSS) hull.

Model-scale rotor force measurements were recorded for the AXWJ under
power. These tests were conducted with waterjet nozzles specifically designed
for the purpose of LDV flow survey measurements. During testing, the transom
flow was observed to impinge on the nozzle hardware included for LDV
measurement purposes, resulting in additional hull drag and power.

Detailed powering analysis derived from the LDV and pressure tap
measurements, including full-scale powering predictions, will be reported in a
separate document.

ADMINISTRATIVE INFORMATION

Funding for the evaluation of the Axial Waterjet on the JHSS hull platform was through the
Office of Naval Research, “ONR Compact High Power Density Waterjet FNC Program”, Project
Manager Ki-Han Kim (ONR 331). The US Navy's Sealift R&D Program is managed through
the Strategic & Theater Sealift Program Office PMS 385. The Joint High Speed Sealift (JHSS)
Program Project Manager is William Davison (PMS 385). The JHSS Hydro Working Group
(HWG), which includes representatives from NAVSEA, NSWCCD, ONR and CSC, coordinates
all hydrodynamic, propulsion, hullform, and structural loads R&D for these combined programs.

Model tests were conducted at the David Taylor Model Basin, Naval Surface Warfare
Center, Carderock Division Headquarters, (NSWCCD), by the Resistance & Powering Division
(Code 5200) and the Propulsion and Fluid Systems Division (Code 5400), under work unit
numbers 06-1-5030-105/106.

INTRODUCTION

The Joint High Speed Sealift (JHSS) was a potential FY12 ship acquisition sponsored by
OPNAV N42. The program was originally designated the Rapid Strategic Lift Ship (RSLS) as
outlined in “Rapid Strategic Lift Ship Feasibility Study Report” [Ref. 1]. In the “Joint High
Speed Sealift (JHSS)” presentation [Ref. 2], the ship's capability was broadly described as being
able to "Embark design payload, transport it 8,000 nm at 36 knots or more, and disembark it to a
seabase or shore facility”. Under the auspices of several Program Offices, three different types
of propulsion systems are being evaluated on the JHSS hull platform: (1) conventional open
propellers on shafts and struts, (2) waterjet propulsion, and (3) pod propulsion.

The entire evaluation of waterjet propulsion on the JHSS hull platform is to include the
construction and testing of two model hulls, the Axial Waterjet (AxWJ) Model 5662, and the
Mixed-Flow Waterjet (MxWJ) Model 5662-1. The extensive testing planned for the two
waterjet models, which will extend over a period of more than eight months, as well as details
pertaining to the design of the waterjets, will be summarized in a single volume after the
conclusion of the test programs and analysis period. In the interim, several reports of smaller
scope, documenting single series of experiments, will be prepared.




This report is the documentation of the first series of model-scale calm water resistance and
powering tests, conducted 12/06-2/07, on the AxWJ Model 5662. The scope of testing within
this first series is outlined in the Test Agenda, Appendix A, Table Al. This document is
intended to be a record of the model test resistance and powering data with analysis presented for
resistance only. Powering analysis for waterjets requires a significant scope of testing to define
mass flow and pressures within the waterjet system. This subsequent testing and analysis on the
AxWJ model data and full-scale predictions of waterjet powering on this hull, as well as the
testing and analysis of the MxWJ, will be reported in subsequent documents.

HULL MODEL

Resistance and propulsion Model 5662, representative of the Axial Waterjet (AxWJ)
propulsion variant of the JHSS hull platform, built of fiberglass to a linear scale ratio A = 34.121,
and LBP = 27.86 ft (8.5 m), was manufactured at NSWCCD. Photographs of completed Model
5662 with LDV nozzles installed are presented in Figure 1. The AXWJ Model 5662 scale ratio is
equivalent to that of the JHSS Baseline Shaft & Strut (BSS) hullform Model 5653 [Ref. 3].

Fig 1. Axial Waterjet (AxWJ) Model 5662 with LDV nozzles and Gooseneck Bulb

Construction

The Axial Waterjet (AxWJ) Model 5662 hull is essentially comprised of two half-models, a
bow half and a stern half, separable at a part-line at Station 10 amidships, allowing
interchangeable stern sections to be tested: AxWJ Model 5662 and subsequent Mixed-Flow
Waterjet (MxWJ) Model 5662-1. Both bow and stern sections were built using a 3/8-inch
fiberglass composite hull, decking, and bulkheads to reduce weight and cost. Photographs taken
throughout the construction and equipment outfitting phases of AxXWJ Model 5662 are presented
in Appendix B, Figure B1. Prior to and during this initial test series, AxXWJ Model 5662, both
bow and stern sections, were painted black.



The bow section included a cut-out (demarked by edge of black painted surface and white
fairing tape) for interchangeable bow designs as well. For this test series, the Gooseneck Bulb
(GB), painted grey, was installed on Model 5662, as shown in Figure 1. The GB was selected as
the optimal tested bow design for the JHSS hull platform during the BSS Series 1 tests [Ref 3].

A unique feature of AxW1J stern half-model was its construction with a cut-out into which a
large waterjet stern plug assembly containing the waterjets and LDV mount points was installed.
The waterjet stern plug was manufactured in four sections using a stereolithography' apparatus
(SLA) process, and joined together before being mated with the hull, Figure 2.

Integrated features of the AxWJ Model 5662
waterjet stern plug included:

* inlet and pump chamber geometry

* LDV measurement hardware mounts

* LDV window mounts

* internal pressure tap passages

* fwd impeller shaft bearing mounts

* fastener and location holes

Fig 2. Model 5662 waterjet stern plug assembly #58 F
L e vl

The nozzle/stator assembly was also fabricated using the SLA process. Rather than retaining
individual nozzles, the LDV nozzles were installed as a single large assembled unit that included
both the waterjet nozzle components necessary for propulsion and components necessary for
conducting the LDV and pressure tap measurements, Figure 3. The LDV nozzles design did not
include steering or reversing buckets, which would be a necessary component of any full-scale
waterjet installation.

Each nozzle included design items necessary for
propulsion:

* the nozzle

* integrated stator blades and hub

* rear impeller shaft bearing mount

* water passage for bearing cooling
The LDV nozzles assembly included design items
necessary for conducting the LDV and pressure
tap measurements:

* external structures above the nozzles

necessary to enclose the LDV water baths

* internal pressure tap passages Fig 3. Model 5662 LDV nozzles assembly

The drive assembly of the model included machined composite impellers on four impeller
shafts. These shafts were connected to dynamometers for the measurement of thrust and torque
on each impeller shaft.

Appendage Configurations
The bare hull configuration of the AxWJ was represented on Model 5662 with the waterjet
inlets (intakes) covered by thin galvanized metal plates cut to the shape of the inlets, and affixed

! Stereolithography is rapid manufacturing / prototyping technology additive fabrication process utilizing a vat of
liquid UV-curable photopolymer resin and a UV-laser to build parts a layer at a time. On each layer, the laser traces
a part cross-section pattern on the surface of the liquid resin. Exposure to the UV-laser light solidifies the pattern
traced on the resin and adheres it to the layer below.



to the model with white fairing tape, as shown in Figure B2. The propulsion nozzles were not
installed, and in their place was another metal plate installed flush with the vertical transom,
covering the waterjet exits, again faired with white tape.

The appended resistance experiments were conducted with the LDV nozzles installed on the
model, but with the waterjet inlets (intakes) remaining covered. In addition, when the inlets were
opened for powering tests, right-angle (“L” shaped) pitot tubes were installed under the hull at
waterjet station 1. These pitot tubes are shown in selected photographs of Figure B1.

In order to conduct Laser Doppler Velocimetry (LDV) measurements in the waterjet nozzles,
which were an integral part of the initial series of experiments on the AxWJ Model 5662, a
special so-named “LDV nozzle” design was employed. This nozzle design incorporated large
external structures above the nozzles to enclose water baths necessary for the LDV system, as
shown in Figure B3. The LDV nozzles also extended further aft, and protruded slightly
outboard, of what would be expected of a propulsion-only designed nozzle. Consequently,
during testing, the transom flow was observed to impinge on the LDV nozzles specific hardware,
resulting in additional hull drag.

To produce turbulent flow along the model, turbulence stimulator studs of 1/8 inch diameter
by 1/10 inch height, spaced 1 inch apart, were affixed to the model approximately 2 inches aft of
the stem, and continuing down to and around the bulb approximately 2 inches aft of the FP.

Instrumentation for Resistance and Powering

The linear bearing, floating platform “Cusanelli” tow post [Ref. 4], was utilized for the
forward attachment point of the model to the towing carriage. Mechanical connection between
the tow post and model was made through a double-axis gimbal assembly. When attached
through the floating platform tow post system, the model is restrained in surge, sway, and yaw,
but is free to pitch, heave, and roll. The location of the model tow point was approximately ship
Station 5, parallel to, and at the same level as, the design waterline (DWL). For the aft
attachment point, the standard ‘grasshopper’ bracket was utilized, attached at approximately ship
Station 15. The counter weights and vertical arm were balanced, in place, so that the arm would
not impart any vertical force on the model.

Model resistance (drag) measurements were collected using a DTMB 4-inch block gauge, of
200 Ibf. capacity. Model side force measurements were collected with a DTMB 4-inch block
gauge, of 50 Ibf. capacity. Side force is monitored at the tow post attachment point during calm
water experiments in order to maintain an essentially zero side force to insure zero yaw angle.
Dynamic sinkage (defined as positive downward) was measured by wire potentiometers, which
were located at the intersection of the deck line at Station 6 forward and Station 15 aft.

The thrust and torque on all four rotor shafts were measured with Kempf and Remmer’s
(K&R) model R31 dynamometers, of 221bf. thrust (T) / 35in-1bf. torque (Q) capacity. To insure
equivalent shaft rotational speed (RPM), rotor shaft pairs, port and starboard, were driven
through 1:1 drive ratio “T” gearboxes and coupled so that both shaft pairs were each powered by
a single constant-torque electric drive motor. The two drive motors were electronically
synchronized to maintain nominally equivalent RPM. Shaft rotation for all four rotors was
inboard-over-the-top. A 60 tooth wheel and magnetic pickup / pulse counter system was used to
determine shaft RPM, for each shaft pair.

Calibration of all aforementioned instrumentation was performed prior to the tests in the
NSWCCD Code 5200 calibration lab by D. Mullinix (CSC contractor).

Displacement, Trim, and Wetted Surface

AxWIJ bare hull resistance tests were conducted at the three JHSS hullform displacement
conditions, the design displacement (DES) of 36,491 tons, a light displacement (LITE) of 32,841
tons representing a 10 percent reduction in displacement from design, and a heavy displacement



(HVY) of 40,140 tons representing a 10 percent increase in displacement from design. All
conditions were ballasted at static even keel (zero trim). Appended resistance and powering tests
were conducted at only the DES displacement.

Hull hydrostatic calculations were made for the AxWIJ bare hull, at each displacement
condition, using the Code 5200 proprietary program “Hydro”. However, unbeknownst to the
authors, prior to the test series two different electronic hull surface geometry files had been
circulated. The first surface file, from which Model 5662 had been constructed, did not contain a
centerline skeg. The second file, from which all of the pre-test hydrostatic calculations were
derived, included a centerline skeg. This discrepancy was not discovered until well after the
completion of this and the subsequent three waterjet test series. Therefore, incorrect values of
wetted surfaces (higher values, with skeg) were calculated and utilized throughout the model test
series.  Post-test, hull hydrostatic calculations were determined with the correct model
configuration, as tested, without centerline skeg. Presented in Table A2 are the hull hydrostatic
calculations for the AxXWJ at design displacement (DES), and the ship/model test parameters for
each displacement, corresponding to the model configuration without a centerline skeg, as tested.

Adjustments were made in the post-test re-analysis of the AxXWJ Model 5662 data to account
for these changes in wetted surfaces. Table 1 presents the ship hydrostatic values, in brief,
utilized for the analysis presented herein, corresponding to the correct model configuration, as
tested, without centerline skeg.

Table 1. AxXWIJ ship hydrostatics, in brief, utilized herein

AxWJ Design (DES) | Heavy (HVY) | Light (LITE)
DISPLACEMENT (tons) 36491 40140 32841
LWL (ft) 979.4 948.5 981.6
WETTED SURFACE (ft?) 96696 100380 92896
DRAFT (ft) 28.3 30.1 26.5
MODEL TEST RESULTS

Resistance and powering test data and analysis for the Axial Waterjet (AxWJ) Model 5662
are presented in Appendix A. The ship-model correlation allowance of Co = 0.0 was
recommended by NSWCCD Code 5200 based on the NAVSEA guidance as modified by more
recent correlation allowance experience. The value of Co = 0.0 was agreed upon by the JHSS
Hull Working Group (HWG). Effective power predictions are made for the full-scale AxWJ
operating in smooth, deep, salt water, with a uniform standard temperature of 59°F.

Bare Hull Resistance

Bare hull resistance experiments were conducted on AxWJ Model 5662, at the three
displacements, DES, HVY, and LITE. Tests were conducted across the speed range of 15 to 45
knots. Again, bare hull was represented with the waterjet inlets (intakes) and waterjet outlets
covered by metal plates, and the LDV nozzles were not installed. The bare hull effective power
(PE) predictions for the full-scale AxXW1J, at three displacements, are presented and compared in
Figure Al and Tables A3-A6, and summarized at selected speeds in Table 2. The presented bare
hull PE predictions have been adjusted to reflect the correct hull hydrostatics (Table 1)
corresponding to the hull configuration without a centerline skeg. For the AXWJ, relative to the
DES displacement, the 10% increase in displacement (HVY) resulted in a 10.4% average
increase in resistance across the speed range, and conversely, the 10% reduction in displacement
(LITE) resulted in an average 9.9% reduction in resistance.



Table 2. AxW1J bare hull effective powers, selected speeds

Design (DES) Heavy (HVY) Light (LITE)
VS (knots) PE (hp) PE (hp) APE (%) | PE(hp) A PE (%)
25 29492 33237 +12.7% 25511 -13.5%
36 85242 95107 +11.6% 76820 -9.9%
39 127665 143358  +12.3% | 115258 -9.7%

A comparison of the AXWJ predicted bare hull PE at DES displacement to that of the pre-test
estimated PE?, over the speed range of 15 to 40 knots, is presented in Figure A2 and Table A6.
The AxWIJ data shows a PE varying within + 4% that of the pre-test estimate over the speed
range of 15 to 35 knots. At speeds of 36 knots and above, the model test predicted PE begins to
diverge from the pre-test estimate, constantly exhibiting a higher value. Across the speed range,
the model test PE prediction averages 1.4% higher than that of the pre-test estimate.

Appended Resistance - LDV Nozzle Design Implications

The LDV nozzles assembly had large vertical surfaces to house the water bath, and extended
further aft and protruded slightly further outboard, than what would be expected of propulsion-
only designed nozzles. Consequently, during testing, the transom flow was observed to impinge
on the LDV nozzles specific hardware. This flow impingement would result in additional hull
drag greater than that associated with standard propulsion-only designed nozzles. In order to
determine the added resistance due to the LDV nozzle design, the following resistance condition
was examined. The LDV nozzles assembly was installed while the waterjet inlets (intakes)
remained covered. This resistance evaluation was conducted at only the seven powering test
speeds (i.e. 15, 20, 25, 30, 36, 39, and 42 knots). The appended PE of the AxWJ with the LDV
nozzles installed was compared to the bare hull PE, and is presented in Figure A3 and Table A7.
The appended PE prediction is adjusted to reflect the correct hull hydrostatics. Averaged across
the seven tested speeds, in the range of 15 to 42 knots, the AxWIJ with the LDV nozzles installed
exhibited a PE of 3.0% higher than that of the bare hull. The largest increase was measured at 30
knots, where the LDV nozzles increased the PE by 4.9%.

Model-Scale Rotor Forces: Ship Propulsion Point, As Tested

The Model 5662 powering experiments were conducted at seven powering test speeds of 15,
20, 25, 30, 36, 39, and 42 knots (equivalent full-scale). Photographs of Model 5662 during the
powering tests, both with and without the LDV system operating (speeds unrecorded), are
presented in Figure B4. The AxWJ Model 5662 powering test rotor force measurements, as
tested, are presented in Figure A4 and Table AS.

Model-scale rotor RPM and force measurements of thrust and torque were recorded, after the
model attained a steady state sinkage and trim, and rotor RPM was adjusted manually to attain
the calculated model drag force (Fp) to emulate the ship propulsion point. Fp was calculated
according to the traditional formula, using the ITTC ship and model friction coefficients,
correlation allowance, wetted surface corresponding to the bare hull condition, and no form
factor. Due to the aforementioned discrepancy in the pre-test calculations of hull wetted surface,
the values of Fp to which the model was adjusted during this series of testing were biased high.

? The AxWJ bare hull resistance pre-test estimate was prepared by Fung (Code 2420), based on proprietary speed-
independent regression equations, where residuary resistance coefficients were a function of the ship’s hull form
parameters, (i.e. displacement-length ratio, beam-draft ratio, prismatic coefficient, maximum section area
coefficient, half-entrance angle, bow bulb transverse section area/vertical location, and transom configuration). The
pre-test estimate was then modified by Cusanelli to reflect the resistance effect of the Gooseneck Bulb.



Values presented in Figure A4 and Table A8 represent the model-scale forces as measured at the
incorrect Fp value. Subsequent analysis to adjust the model propulsion and rotor forces to reflect
the correct values of Fp, will also be presented within this document.

Model-Scale Rotor Forces: Over and Under-Propulsion

Model-scale powering data for the AxWJ Model 5662 was collected for over and under-
propelled conditions, at equivalent ship speeds of 25 and 36 knots. The model rotor RPM was
adjusted to nominal +5% and +10% of the values determined for the ship propulsion point as
presented above. Rotor RPM increases above the value at ship propulsion point is defined as
over-propelled (reduced Fp), and conversely, RPM below ship propulsion point is defined as
under-propelled (increased Fp). The model rotor force measurements for AxWJ Model 5662, in
the over- and under-propelled conditions, are presented in Figure AS and Table A9.

Included in Table A9 is a comparison of the interpolated propulsion point (at the tested
values of Fp) from over/under propulsion test to that determined from standard powering test
technique. A time span of two weeks separated the standard powering test and the over/under
propulsion test. The determined values of rotor RPM to attain 25 and 36 knots differed by less
that 1% between the two test techniques. While the individual rotor forces appeared to vary
somewhat, the total values of thrusts and torques for all four rotors, at 25 knots differed by 1.3%
an 1.1% respectively, and at 36 knots differed by only 0.5% and 0.1% respectively. It can it be
concluded that over/under propulsion test did not necessarily add any more accuracy to the
measured forces at the ship propulsion point, as tested.

The collected data from the over/under propulsion test has proved to be invaluable, as it was
used post-test to re-analyze the powering data at the corrected Fp values due to the wetted
surface discrepancy. Tabulated values of rotor forces for varying Fp values were derived from
the over/under propulsion test at ship speeds of 25 and 36 knots only. Estimates were made of
rotor forces for varying Fp values at the additional 5 powering test speeds, 15, 20, 30, 39, and 42
knots, using the measured values for each speed at the tested Fp, and adjusting these values
based on the individual slopes of the curve fits to the over/under powering data measured at 25
and 36 knots. The estimated over/under propulsion forces, at the additional 5 powering test
speeds, are presented in Table A10.

Model-Scale Rotor Forces: Estimated At Corrected Ship Propulsion Point

The AxWJ Model 5662 powering test rotor force measurements, estimated at the corrected
ship propulsion point (correct Fp values) by utilizing the over/under propulsion test data, for
each of the seven powering test speeds, are presented in Figure A6 and Table A11. At all test
speeds, the value of Fp was reduced by 6.5% due to the reduction in calculated ship wetted
surface, necessitating an increase in rotor RPM and an associated increase in thrust and torque on
all shafts, in order to attain the corrected ship propulsion point.

For comparison, included in Table Al1 are the rotor force measurements estimated from the
over/under propulsion test data, at the original propulsion point (incorrect Fp) as tested. On
average across the seven test speeds, the reduction in Fp of 6.5% necessitated an increase in
model rotor RPM of 1.3%, and increases in model rotor thrust and torque of 2.8% and 2.9%,
respectively.

The rotor force measurements determined during model-scale powering tests are reflective of
the model scale pump efficiencies. Direct extrapolation of these rotor forces will not be
representative of the expected power requirements of the full-scale waterjets. Full-scale pump
efficiencies have been determined to be significantly higher than those measured at model scale.
Powering analysis for waterjets requires a significant scope of additional testing and analysis to
define mass flow and pressures within the waterjet system. This subsequent testing on the



AxW]J, continued analysis, and full-scale predictions of waterjet powering on this hull, will be
reported in subsequent documents.

Model Test Uncertainties - Resistance & Rotor Force Measurements

AxWIJ Model 5662 measurement uncertainties were determined for the quantities of model
speed, hull resistance, and for combined inboard and outboard shafts quantities of shaft thrust,
torque, and rotational speed (RPM). Overall uncertainties were determined by combining bias
and precision limits using the root-sum-square (RSS) method for a 95 percent confidence level.
The values for torque and RPM were then used to determine the uncertainty in the calculation of
delivered power. Model 5662 resistance and powering measurement uncertainties are presented
in Table A12.

Resistance measurement uncertainties, at 25 and 36 knots, were determined to be +0.46%
and +0.35% of the measured nominal mean values, respectively. Likewise, the model scale
delivered power measurement uncertainties were +2.13% and +1.59%, at 25 and 36 knots. The
stated uncertainties for measured model delivered power reflect the combined measurement
uncertainties of eight model quantities, shaft torque and RPM, for each of four shafts.

Dynamic Sinkage and Pitch

The dynamic sinkage and pitch of the model was recorded for each tested ship speed, during
all of the resistance and powering tests. The dynamic sinkage and pitch of the AxWJ Model
5662, for all three displacements, recorded during the bare hull resistance tests (unpowered), are
presented and compared in Figure A7 and Table A13. The dynamic sinkage and pitch recorded
during the powering tests at DES displacement are presented, and compared to the values from
the DES bare hull test, in Figure A8 and Table A14.

The waterjet propulsion does exhibit some measurable effects on the running trim of the
model. Presumably due to the suction force of the operating waterjets on the AxWJ Model 5662,
the measured dynamic sinkage and pitch was significantly different during the powering tests as
compared to the bare hull resistance tests. Across the entire tested speed range, 15 to 42 knots,
the recorded sinkage at the Aft Perpendicular (AP) was greater when the waterjets were
operational. Consequently, the sinkage at the Forward Perpendicular (FP) was reduced.

ROM ESTIMATE OF AxWJ FULL-SCALE POWERING

Direct extrapolation of model-scale rotor force measurements will not be representative of
the expected power requirements of the full-scale waterjets, due to significant differences in
model vs. full-scale pump efficiencies. In addition, the present tests were conducted on a model
configuration without the installation of a centerline skeg. It is the opinion of the HWG that the
full-scale AxWJ would likely require a centerline skeg for structural support during construction
and dry-docking, and for directional stability.

For a preliminary evaluation of AxXWJ powering performance, a rough order of magnitude
(ROM) estimate of full-scale powering expected from the full-scale AxXWJ was prepared. This
ROM powering estimate utilized estimated full-scale appended effective power, and the accepted
range of waterjet propulsion coefficients (PCwy).

In order to estimate the AXWJ appended resistance with a centerline skeg, an estimate of the
added effective power due to the installation of a centerline skeg on the AxWJ was prepared by
H. Liu (Code 5200), based upon his previous appendage drag evaluation.” The skeg design
utilized was that previously included on the AxXWJ hull. This skeg increases the hull wetted
surface by 6667ft° (6.5% increase). The skeg added effective power was applied to the
resistance prediction for the AxWJ with LDV Nozzles.
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The propulsive coefficient for waterjet propulsion, relating the ‘appended’ hull resistance to
required propulsion power, when at speeds in the upper portion of the JHSS hull platform range
(30 to 42 knots), has an accepted value in the range of 0.65 < PCy; < 0.68. For speeds below 30
knots, trends in the PCyw; show that it can reduce significantly in value. A recent waterjet
evaluation program, conducted by the US Navy on the X-Craft at a range of loadings, included
both model-scale and full-scale powering experiments at low speeds. Ship/model powering
correlations were determined by Metcalf* (Code 5200) from which can be determined a range of
PCy; for ship speeds below 30 knots. Coincidentally, the range of values for PCy; determined
from the X-Craft study, averaged over the speed range of 30 to 42 knots, is 0.64 to 0.68. The
aforementioned values for PCy; were derived primarily from mixed-flow pumps, as used in most
current commercially available waterjets, and therefore, may not reflect full-scale performances
of axial pump waterjets.

Applying the range of accepted PCy; at speeds of 30 knots and above, and the range in PCyw;
from the X-Craft evaluation to speeds below 30 knots, to the appended AxWJ (with LDV
nozzles and centerline skeg), at design displacement, yields the preliminary rough order of
magnitude (ROM) powering estimate for the AxWJ, as presented in Table 3.

Table 3. AxXWIJ preliminary rough order of magnitude (ROM) powering estimate

AxW] AxW]J Preliminary Rough Order of Magnitude (ROM)
Appended* Powering Estimate
Vs (kts) PE (hp) Range of PCy, Range of PD (hp)
15 7088 0.46 - 0.53 15566 - 13410
20 16383 0.54 - 0.57 30580 - 28740
25 32477 0.58 - 0.61 56134 - 53224
30 52839 81290 - 77704
36 93640 144062 - 137706
39 140776 0.65 B 0.68 216579 = 207024
42 208906 321394 = 307215

*LDV Nozzles PE prediction plus Centerline Skeg Added PE Estimate

The Table 3 preliminary rough order of magnitude (ROM) powering estimate is for
preliminary evaluation purposes only. Full-scale predictions of waterjet powering on the AxWJ
hull will be reported, in a subsequent document, after the completion of additional testing and
analysis to define mass flow and pressures within the waterjet system.

COMPARISONS BETWEEN AxWJ AND JHSS BASELINE BSS

A comparison of the AxXW1J bare hull PE, at the three displacements, to that of the bare hull
JHSS baseline shafts & struts (BSS) parent hullform, is presented in Figure A9 and included in
Table A6. The AxWIJ at DES, HVY, and LITE displacements, respectively, exhibited a speed-
averaged bare hull resistance of 16.4%, 16.6%, and 10.2% higher than that of the bare hull BSS
at equivalent displacement. Increase in bare hull resistance for the AXWJ over that of the BSS is
likely a result of the greater volume and depth of transom in the AxWJ design. The AxWJ
transom depth was dictated primarily by the criteria, that, in order to assure rotor priming, half of
the waterjet inlet diameter should remain submerged at design displacement.

The appended PE of the AxWJ, with LDV nozzles installed, was compared to that of the
JHSS baseline shafts & struts (BSS) hull, fully appended (shafts & struts, rudders, and stern
flap), at DES displacement, and is presented in Figure A10 and included in Table A7. Averaged
across the seven tested speeds, in the range of 15 to 42 knots, the AxWJ with the LDV nozzles

¢ Upcoming NSWCCD report



installed exhibited a PE of 8.2% lower than that of the fully appended BSS hull. This
comparison indicates that even though the AxWIJ bare hull exhibits increased resistance due to its
increased transom volume, when compared to that of the baseline BSS bare hull, the requirement
of additional appendages on the BSS hull for propulsion (i.e. shafts & struts, rudders) increases
that hull’s appended resistance to a value greater than the AxXWJ hull (which requires only the
waterjet nozzles and no corresponding shaftline appendages or rudders). Two additional facts
should be noted, however: (1) The LDV nozzles design did not include steering or reversing
buckets, which would be a necessary component of any full-scale waterjet installation. It is
unknown whether such components, which could be designed so as to retract, would have any
influence on resistance. (2) The LDV nozzles design did impinge on the transom flow resulting
in additional hull drag greater than that expected for standard propulsion-only designed nozzles.

A direct comparison between a full-scale powering prediction for the AxWJ and that of the
JHSS baseline BSS cannot be presented as of this writing. Unlike the open propeller shaft and
strut BSS Model 5653 data, the model-scale data from the waterjet propelled AxWJ cannot be
directly extrapolated to full-scale powering values. The rotor force measurements determined
during model-scale waterjet powering tests are reflective of the model scale pump efficiencies.
Direct extrapolation of these rotor forces will not be representative of the expected power
requirements of the full-scale waterjets, which have been shown to have significantly higher
pump efficiencies. For documentation purposes only, a model-scale powering comparison
between AxWJ Model 5662 and BSS Model 5653 is presented in Table A15. This comparison is
strictly drawn on model-scale measured forces only, and does not reflect the expected full-scale
powering results.

A comparison of the AxXWJ preliminary rough order of magnitude (ROM) powering estimate,
to the powering prediction for the JHSS BSS, Cusanelli and Cheskakas [Ref 5], is presented in
Table 4. At high speeds of 30 knots and above, the waterjet propulsion system of the AxWJ
appears to have an advantage in ship powering over that of the open propeller BSS hull. At the
39 knot speed of interest, the AXWJ has an estimated power approximately 2.5% lower than that
of the BSS. For speeds below 30 knots, the AXWJ has an estimated required power significantly
higher than that of the BSS.

Table 4. Comparison between AxWIJ preliminary rough order of magnitude
(ROM) powering estimate and JHSS baseline BSS powering prediction

BSS AxWJ Rough Order of
Powering | Magnitude (ROM) Powering
Prediction Estimate
Vs (kts) PD (hp) Avg PD (hp) i A PD (%)
15 12031 14488 +20.4%
20 26253 29660 +13.0%
25 50426 54679 +8.4%
30 83951 79497 -5.3%
36 149593 140884 -5.8%
39 217339 211801 -2.5%
42 317161 314304 -0.9%

Again, the AxXWJ preliminary rough order of magnitude (ROM) powering estimate presented
in Table 4 is for preliminary evaluation purposes only.



CONTINUATION OF WORK

A significant scope of this initial test series on AXWJ Model 5662 was dedicated to the
waterjet flow surveys conducted with the Laser Doppler Velocimetry (LDV) system, under the
direction of D. Fry (Code 5400), and to the measurement of pressures within the waterjet system,
under the direction of M. Donnelly (Code 5400). Detailed explanations of both the LDV and the
pressure measurement systems, recorded data, subsequent analysis, and ultimately full-scale
predictions of waterjet powering on this hull, will be reported in subsequent documentation.

CONCLUSIONS

This report is the documentation of the first series of model-scale calm water resistance and
powering tests, conducted 12/06-2/07, on the AxWJ Model 5662 with LDV nozzle design, a
waterjet propelled variant of the JHSS hull platform. It is intended to be a record of the model
test resistance and powering data and analysis, with full-scale predictions presented for
resistance only.

Bare hull effective powers were determined for the AxWJ at the three JHSS hullform
displacement conditions, design (DES) and + 10% displacements. The AxWJ exhibited a nearly
linear relationship between displacement variations and changes in resistance.

The AxWJ bare hull effective power was also compared to that of the JHSS Baseline shaft &
strut (BSS). Increase in bare hull resistance for the AXWJ over that of the BSS is likely a result
of the greater volume and depth of transom in the AxWJ design. The AxWJ transom depth was
dictated primarily by the criteria, that, in order to assure rotor priming, half of the waterjet inlet
diameter should remain submerged at design displacement. A relaxation in this waterjet transom
depth criteria would likely reduce the resistance of the AxXW1J hull.

Appended effective power was determined for the AxWJ hull with the LDV design waterjet
nozzles installed. During testing, the transom flow was observed to impinge on the LDV nozzles
hardware, resulting in an increase in resistance larger than that anticipated for standard
propulsion-only designed nozzles.

The AxWJ with the LDV nozzles installed exhibited effective lower than that of the fully
appended BSS hull. This comparison indicates that even though the AxWJ bare hull exhibits
increased resistance due to its increased transom volume, when compared to that of the BSS bare
hull, the requirement of additional appendages on the BSS hull for propulsion (i.e. shafts, struts,
rudders) increases that hull’s appended resistance to a value greater than the AXWJ hull with
nozzles installed (which requires no corresponding appendages).

Model-scale rotor force measurements were recorded for the AxXWJ when under power. Due
to significant differences in model-scale versus full-scale pump efficiencies, direct extrapolation
of rotor forces measured at model-scale will not be representative of the expected power
requirements of the full-scale waterjets. Powering analysis for waterjets requires a significant
scope of additional testing to define mass flow and pressures within the waterjet system. This
subsequent testing on the AxWJ, continued analysis, and full-scale predictions of waterjet
powering, will be reported in subsequent documents.

For a preliminary evaluation of AxXWJ powering performance, a rough order of magnitude
(ROM) estimate of full-scale powering expected from the AxXWJ was prepared. This ROM
powering estimate utilized estimated full-scale appended effective power, and the accepted range
of waterjet propulsion coefficients (PCyw;). The AxWJ preliminary rough order of magnitude
(ROM) powering estimate is for preliminary evaluation purposes only.

A comparison of the AxXWJ preliminary rough order of magnitude (ROM) powering estimate,
to the powering prediction for the JHSS BSS, shows that at high speeds of 30 knots and above,
the waterjet propulsion system of the AXWJ appears to have an advantage in ship powering over
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that of the open propeller BSS hull. For speeds below 30 knots, the AxWJ has an estimated
required power significantly higher than that of the BSS.

Presumably due to the suction force of the operating waterjets on the AxXWJ Model 5662, the
measured dynamic sinkage and pitch was significantly different during the powering tests as
compared to the bare hull resistance tests. The sinkage at the Aft Perpendicular (AP) was greater
when the waterjets were operational, and consequently, the sinkage at the Forward Perpendicular
(FP) was reduced. On a ship with open propellers, such as the JHSS BSS, the dynamic sinkage
and pitch exhibits little change between resistance and propulsion tests.
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Table Al. Test Agenda, AxXWJ Model 5662 Series 1, Dec 2006 to Feb 2007

g Objective

Date
Test #

Mon | 12/18 Model rigging continued.

Tue | 12/19 Model moved to Carriage 2. Rigging completed. Model ballasted to 3 displacements.

Model & Instrumentation installed on Carriage 2

1_|PE set-up, Check-out, Alignment

Wed | 12/20 Admiral Sullivan Tour

2 |EHP [AxWJ GB HVY BH]

3 |EHP [AxWJ GB DES BH]

Thu | 12/21| 4 |EHP [AXWJ GB LITE BH]

Shaftlines disassembled at dynos. Drive motors & controls tested.

LDV Rig

Fri | 12/22 Jet Assemblies Installed with dummy hubs. Properly arrange dynamometers. Drive
shafts re-manufactured.

Mon | 12/25 HOL

Tue | 12/26 HOL

Pressure gage system assembly and installation.

Wed | 12/27 Rebuild, Reassemble, & Troubleshoot drive system.

5 |No Loads Conducted* Alternative methods.

Thu | 12/28 S| Aft Bearing manufactured and replaced. Cracks in ducts repaired. Jet Assemblies
Installed with Rotors. Drive system reassembled. Pressure gage installation continued.

Fri |12/29 LDV Rig_
Mon [ 1/1 HOL
Tue | 172
Wed| 1/3 LDV and Pressure Systems Installation and Troubleshooting. Jet Assemblies with Rotors
Thu | 1/4 Removed/Reinstalled/Modified twice.
Fri | 1/5
Mon| 1/8 Model Installed under carriage. Cable and pressure tube installation and check-out.
Tue | 1/9 Model removed from Carriage. LDV troubleshooting begun.
Wed| 1/10
S ; LDV troubleshooting, Mirror replacement.
Sat | 113

Mon | 1/15 HOL. LDV mirror installation / troubleshooting.

Tue | 1/16 | 6 |Detailed flowrate measured on each jet*

Wed | 1/17 |Z|Blocking Board installed. Bollards conducted on All 4 shafts simultaneously.
8 |DES Powering, 7 speeds. Shaft Forces, Pressures, Station 6 LDV.
9 |Continuation of DES Powering, Station 6 LDV

Thu | 1/18 | 10|Blocking Board reinstalled. Bollards conducted on Individual Shafts.

Aft (still) camera installed. Dedicated photo runs.

Fri | 1719 Model to drydock. Rig Station 3 (stbd) LDV.

Mon | 1/22 Rig Station 3 (stbd) LDV. Reinstall Model.

11 |Station 3 (stbd) LDV, 7 speeds, powered.

Tue | 1/23 Model to drydock. Rig Station 3 (port) LDV.

Reinstall Model.

Wed | 1/24 | 12 |Station 3 (port) LDV, 7 speeds, powered.

Model to drydock.

Thur| 1/25 Rig Station 1 (stbd) LDV. Reconfigure pressure gages to CL taps.
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Table Al. Test Agenda, AxWJ Model 5662 Series 1, Dec 2006 to Feb 2007 - continued

o |
> - - .
S s E Objective
Reinstall model. Pressure gages connected.
Fri | 1/26 Bollards (partial test, no blocking board) to verify pressure transducer installation.
13 |Station 1 (stbd) LDV, 7 speeds, powered. Measure CL pressures.
Mon | 1/29 Model to drydock. Install covers on inlets. Reinstall model.
14 |Station 1 (stbd) LDV, 7 speeds, inlets covered.
Tue | 1/30 Model to drydock. Rig Station 1 (port) LDV. Inlets covers removed. Reinstall Model.
15 [Station 1 (port) LDV, 7 speeds, powered.
Hi-Def Video camera installed. Dedicated video runs.
wed| 1/31 15 |Station 1 (port) LDV, powered (continued).
16 [Over/Under Propulsion. DES, 25 & 36 kts.
Model to drydock. Install covers on inlets.
Reinstall Model.
Thur| 2/1 |17 |Station 1 (port) LDV, 7 speeds, inlets covered.
Fri | 2/2 De-Rig

Test *Rotor RPMs (nominal)

5
6

No Loads: 1000, 1500, 2000, 2500, 2800, 3000
Flow Rate: 1000, 1750, 2500

7, 10 Bollards: 1000, 1500, 1750, 2000, 2500, 2800

Al8




61V

. . N st = 8, sivo = XyfBy 2060 = YdMy
(ubszss ) weeoes = A 89 = Y, weo = Xyl pop0 = My
(160 ) sq 11002 =  INIWIOVIASIA c6e = 3, owso = Xglg oee0 = dMg
e X0 14vua 88 = J(IM110)/Y goro = Xyly oog0 = Xp
ol i K wimn 10 = 200 ore = XuXg igs0 = Hdg
i e 8950 =  IMV44 wee = Xgm izgo = 3dy
(weszg) yoree = (W) H1ONT sevo = M1ed SeLT = S5 zigo = Vdy
(webg) ye8E = (d87) HLONIT 0o = SeAM %680 = Hwo 86v’0 = umo
i 0000 = ™ 1080 = 2 oss0 = 9p
HEYE OLYJ IS 0es0 = w1 90 =  dA owvo = 8
V1vd 37vOS 13A0N S1IN3IDI44300 TYNOISNIWIAONON
(wbs '©868) Yos 96096 = 3JOV4HNS A3 LLIM
(1'6L0/€) LO'M6YSE =  INIWIOVIASIa \ JJ/,/
(woo0o) Yooo = (mog+) WIHL =¥
(Wzeg) Yr® = X)) 14vea
(Wse'1E) Y Igp0L = *g) wvas
(wze'gse) HeEeeL6 = {IMT) HLONT
(w12682) YIS066 = (dg17) HIDNT
SNOISN3IWIAQ TVdIONIHG

9002/2 +/90 aing %98uss00y) |InH }elieleM [eIXy SSHI

s1ajouwrered 3533 [apowr/diys pue suone[NI[Ed dNBISOIPAY (MXY "7V 2[qeL




Table A2. AxWJ hydrostatic calculations and ship/model test parameters

Axial Waterjet (AxWJ) Hull |Design (DES) Heavy (HVY) Light (LITE)
Gooseneck Bulb (GB) +10% -10%
36491 tons 40140 tons 32841 tons
Model 5662 SHIP MODEL SHIP MODEL
MODEL SCALE RATI( - 34121 - 34121 - 34121
LOA (ft) 977.5 28.648 977.5 28.648 977.5 28.648
LBP (ft) 950.5 27.857 950.5 27.857 950.5 27.857
LWL (ft) 979.4 28.703 948.5 27.798 981.6 28.769
WET SURF HULL(sq ft) | 96696 83.055 100380 86.219 92896 79.791
WET SURF APP(sq ft) 0 0.000 0 0.000 0 0.000
TOTAL WET SURF(sq ft) | 96696 83.055 100380 86.219 92896 79.791
DISPLACEMENT (ton, Ibs) | 36491 2000 40140 2200 32841 1800
BOW DRAFT @FP (ft)| 28.27 0.829 30.07 0.881 26.47 0.776
STERN DRAFT @AP (ft)| 28.27 0.829 30.07 0.881 26.47 0.776
SHIP TRIM (+ft bow up) 0.00 0.000 0.00 0.000 0.00 0.000
TRIM ANGLE (degrees) 0.00 0.00 0.00
BEAM (ft) 104.8 3.072 105.0 3.076 104.5 3.062
TEMP (F) 59 70 59 70 59 70
RHOQ 1.9905 1.9362 1.9905 1.9362 1.9905 1.9362
NU| 1.2817 1.0552 1.2817 1.0552 1.2817 1.0552
Bow Deck/Keel (ft) 716 2.098 716 2.098 716 2.098
Pos of Hook fwd of FP (ft) 37.0 1.083 0.0 0.000 0.0 0.000
Stern Deck/Keel (ft) 71.6 2.098 716 2.098 716 2.098
Pos of Hook aft of AP (ft) 171 0.500 0.0 0.000 0.0 0.000
BOW HOOK SETTING (ft) 1.269 1.216 1.322
Hook if at FP (ft) - 1.269 - 1.216 - 1,322
Hook if at AP (ft) - 1.269 - 1.216 1.322
STERN HOOK SETTING (ft) 1.269 1.216 1.322
ROTOR DIA (ft, in) 9.91 3.485 991 3.485 993 3.485
NUMBER of BLADES] 7 7 7 7 7 7
ROTOR ROTATION  INBD INBD INBD INBD INBD INBD
SPEED RANGE, min (kts) 15.0 257 15.0 2.57 15.0 2.57
Design Speed (kis) 36.0 6.16 36.0 6.16 36.0 6.16
max (kis) 45.0 7.70 450 7.70 450 7.70
MODEL DISP desired (Ibs) 2000 2200 1800
DISP actual (ton, Ibs) 36490 2000 40138 2200 32841 1800
MODEL WEIGHT* (Ibs) - 1176 - 1176 - 1176
Floating Platform (Ibs) - 45 = 45 = 45
BALLAST required (Ibs) - 779 - 979 - 579
delta DISP (ton, Ibs) + 3649 +200 -3649 -200
+10.0% -10.0%
APPENDAGES, ws (sqft) 0.0 0.000 0.0 0.000 0.0 0.000
none 0.0 0.000 0.0 0.000 0.0 0.000

*Model weight for BH PE Tests was 1176lbs
Model weight for LDV & PD tests was 1310Ibs and ballast was adjusted accordingly.
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Table A3. AxW1J, Exp2, BH, HVY PE prediction

JHSS AxWJ GB Exp2 BH HVY (PE from RT input with WS no skeg)

SHIP MODEL

LAMBDA 34121
LWL 9485 ft 27.798  ft

S (no Skeg) 100380  ft? 86219  ft?
wWT 40140 LT 2200.7 Ibs
RHO 1.9905 (Ibf*'sec %)Mt *  1.9365 (Ibf'sec %yt *
NU 1.2817E-05 ft%/sec 1.0692E-05 ft2/sec
Ca 0.0000
Vs PE FRICTIONAL POWER FN V-L 1000CR
knots HP KW HP KW
14.0 5427.7 4047.4 3426.3 2555.0 0.135 0.455 0.835
15.0 6631.1 4944 .8 4179.5 3116.7 0.145 0.487 0.832
16.0 8021.2 5981.4 5033.5 37535 0.155 0.520 0.835
17.0 9615.7 7170.4 5994.2 44699 0.164 0.552 0.844
18.0 114451 8534.6 7067.5 5270.2 0174 0.584 0.859
19.0 13549.1 101035 8259.2 6158.9 0.184 0617 0.883
20.0 15968.8 11908.0 9575.2 7140.3 0.193 0.649 0915
21.0 18738.0 139729 11021.3 82186 0.203 0.682 0.954
220 218728 16310.6 12603.2 9398.2 0.213 0.714 0.997
23.0 25364.2 18914.1 14326.7 10683.4 0.222 0.747 1.039
24.0 201742 21755.2 161974 12078.4 0.232 0.779 1.075
25.0 33237.1 24784.9 182211 13587.5 0.242 0.812 1.100
26.0 37467.9 27939.8 20403.4 152148 0.251 0.844 1.112
27.0 41777.3 31153.3 22750.0 16964.7 0.261 0.877 1.107
28.0 46092.8 34371.4 25266.4 18841.1 0.271 0.909 1.086
29.0 50383.4 37570.9 27958.3 20848 5 0.280 0.942 1.053
30.0 54686.2 407795 30831.2 22990 8 0.290 0.974 1.012
31.0 591295 440928 33890.6 252722 0.300 1.007 0.970
320 63948.4 47686.3 371422 27696.9 0.309 1.039 0.937
33.0 69488 4 518175 40591.4 30269.0 0.319 1.072 0.921
340 76191.2 56815.8 442437 329925 0.328 1.104 0.931
35.0 84560.7 63056.9 481045 35871.6 0.338 1.136 0974
36.0 95106.8 70921.2 521795 38910.2 0.348 1.169 1.054
37.0 108271.1 BO737.7 564739 421126 0.357 1.201 1171
38.0 124339.3 92719.8 60993.3 454827 0.367 1.234 1.322
39.0 143357.7 106901.8 65743.0 49024 6 0.377 1.266 1.498
40.0 165075.2 1230965 707285 52742.2 0.386 1.209 1.688
41.0 188946.5 140897 4 75955.1 56639.7 0.396 1.331 1.877
420 214246.8 159763.8 B81428.2 60721.0 0.406 1.364 2.053
43.0 240363.6 179239.1 87153.2 64990.1 0.415 1.396 2.206
44.0 267355.9 199367.3 931354 69451 1 0.425 1.429 2.342
450 206892.6 2213928 99380.2 74107.8 0.435 1.461 2.482




Table A4. AxWJ, Exp3, BH, DES PE prediction

JHSS AxWJ GB Exp3 BH DES (PE from RT input with WS no skeg)

SHIP MODEL
LAMBDA 34121
LWL 979.4 ft 28.703 ft
S (no Skeg) 96696 ft? 83.055 ft 2

wWT 36491 LT 2000.6 Ibs

RHO 1.9905 (Ibf*'sec )t *  1.9365 (Ibf*sec %)t *

NU 1.2817E-05 ft?/sec 1.0692E-05 ft%/sec

Ca 0.0000

Vs PE FRICTIONAL POWER FN V-L 1000CR
knots HP KW HP KW

14.0 54415 4057.7 32879 24518 0.133 0.447 0.933
15.0 6558.3 4890.6 4010.8 2990.8 0.143 0.479 0.897
16.0 78358 5843.2 4830.4 3602.0 0.152 0.511 0.872
17.0 92099 6935.0 5752.4 42895 0.162 0.543 0.858
18.0 10977.7 8186.1 6782.4 5057.6 0171 0.575 0.855
19.0 12893.4 9614.6 7926.2 5910.5 0.181 0.607 0.861
20.0 15064.3 112334 9189.2 6852.4 0.190 0.639 0.873
21.0 17496.6 13047.2 10577.1 7887.3 0.200 0.671 0.888
220 20183.1 15050.6 12095.3 9019.5 0.209 0.703 0.903
23.0 23102.0 17227.2 13749.5 10253.0 0.219 0.735 0914
24.0 26219.0 195515 15545.0 11591.9 0.228 0.767 0918
25.0 29491.7 219919 17487.3 13040.3 0.238 0.799 0913
26.0 32877.2 24516.5 19581.9 14602.3 0.247 0.831 0.899
27.0 363428 271009 21834.2 16281.8 0.257 0.863 0.876
28.0 39878.0 29737.0 242495 18082.9 0.266 0.895 0.846
29.0 43507 8 324438 26833 2 20009.5 0.276 0.927 0813
30.0 47305.7 35275.8 29590.7 22065.8 0.285 0.959 0.780
31.0 51403.3 383315 32527.3 242556 0.295 0.991 0.753
32.0 55997.3 4175722 35648.3 26583.0 0.304 1.023 0.738
33.0 613476 457469 38959.0 29051.8 0.314 1.054 0.741
34.0 67769.6 50535.8 42464.7 31666.0 0.323 1.086 0.765
35.0 75614.7 56385.9 46170.7 344295 0.333 1.118 0.816
36.0 85241.8 63564.8 50082.1 37346.2 0.342 1.150 0.896
37.0 96979.0 72317.2 54204.2 40420.1 0.352 1.182 1.004
38.0 111077.6 82830.6 58542.2 43655.0 0.361 1.214 1.138
39.0 127665.4 95200.1 63101.4 47054.7 0.371 1.246 1.294
40.0 146705.2 109398.1 67886.9 50623.3 0.380 1.278 1.464
41.0 167971.8 125256.6 72903.9 54364.5 0.390 1.310 1.640
42.0 191064.5 1424768 78157.6 58282 1 0.399 1.342 1.811
43.0 2154774 160681.5 83653.0 62380.0 0.409 1.374 1.971
44.0 240758.0 179533.3 89395.4 66662.1 0.418 1.406 2112
45.0 266792.8 198947 .4 95389.8 71132.2 0.428 1.438 2.236
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Table AS. AxWJ, Exp4, BH, LITE PE prediction

JHSS AxW.J GB Exp4 BH LITE (PE from RT input with WS no skeg)

SHIP MODEL
LAMBDA 34121
LWL 981.6 t 28769  ft
S (no Skeg) 92896 ft 2 79.791 ft?

wT 32841 LT 18005  Ibs

RHO 19905  (bf'sec “ytt * 19365  (Ibf*sec *ym *

NU 1.2817E-05 ft?/sec 1.0692E-05 ft?/sec

Ca 0.0000

Vs PE FRICTIONAL POWER FN V-L 1000CR
knots HP KW HP. KW

14.0 5234.1 3903.1 3157.8 23548 0.133 0.447 0.936
15.0 6153.3 4588.5 3852.1 28725 0.142 0.479 0.844
16.0 7225.7 5388.2 4639.3 34595 0.152 0.511 0.781
17.0 8524.9 6357.0 5524.8 41198 0.161 0.543 0.756
18.0 10066.1 7506.3 6514.1 48576 0.171 0.575 0.754
19.0 11987.8 8939.3 7612.6 5676.7 0.180 0.606 0.789
20.0 141186 10528.2 8825.7 6581.3 0.190 0.638 0.819
21.0 16217.4 12093.3 10158.7 7575.3 0.199 0.670 0.809
220 18357.6 13689.3 11616.9 8662.7 0.209 0.702 0.783
23.0 20587.9 15352.4 13205.6 9847.4 0.218 0.734 0.751
24.0 22955.0 17117.5 14930.1 11133.4 0.228 0.766 0.718
25.0 25511.0 19023.5 16795.7 125245 0.237 0.798 0.690
26.0 283039 21106.3 18807.4 14024.7 0.247 0.830 0.669
27.0 313479 23376.2 20970.6 15637.8 0.256 0.862 0.652
28.0 34634.7 25827 1 23290.4 17367.7 0.266 0.894 0.639
29.0 38164.1 28459.0 25772.0 19218.1 0.275 0.926 0.629
30.0 41929.4 31266.8 28420.4 211931 0.285 0.958 0.619
31.0 45967.5 34278.0 312409 23296.3 0.294 0.989 0.612
32.0 50411.4 37591.8 342385 25531.6 0.304 1.021 0.611
330 55408.9 41318.4 37418.2 27902.8 0.313 1.053 0.619
340 61250.9 45674.8 40785.3 304136 0.323 1.085 0.644
35.0 68237.9 50885.0 443447 33067.8 0.332 1.117 0.690
36.0 76820.1 57284.7 48101.4 35869.2 0.342 1.149 0.762
37.0 87333.2 65124.4 52060.5 38821.5 0.351 1.181 0.862
38.0 100109.9 74651.9 56227.1 419285 0.361 1.213 0.989
39.0 115257.8 85947.7 60606.0 451939 0.370 1.245 1.140
40.0 132615.3 98891.2 65202.2 48621.3 0.380 1.277 1.303
41.0 151836.1 113224.2 70020.8 522145 0.389 1.309 1.469
420 172220.6 1284249 75066.7 55977.3 0.399 1.341 1622
43.0 193106.3 143999.4 80344.9 59913.2 0.408 1.372 1.755
440 214306.4 159808.3 85860.2 64026.0 0.418 1.404 1.866
450 236794.3 176577.5 91617.6 68319.3 0.427 1.436 1.971
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Table A6. AxWJ, Series 1 PE tests, summary and comparisons

A24

Axial Waterjet GB BH (Model 5662) Displacement Effects

Exp3 Exp2 Exp2/Exp3 Exp4/Exp3

AxWj AxWj AxWj AxWj AxWj
GB GB GB GB GB
BH BH BH BH BH

DES HVY LITE HVY/DES LITE/DES

Vs (kts) PE (hp) PE (hp) PE (hp) Vs (kts) PE Ratio PE Ratio
14 5441 5428 5234 14 0.997 0.962
15 6558 6631 6153 15 1.011 0.938
16 7836 8021 7226 16 1.024 0.922
17 9300 9616 8525 17 1.034 0.917
18 10978 11445 10066 18 1.043 0.917
19 12893 13549 11988 19 1.051 0.930
20 15064 15969 14119 20 1.060 0.937
21 17497 18738 16217 21 1.071 0.927
22 20183 21873 18358 22 1.084 0.910
23 23102 25364 20588 23 1.098 0.891
24 26219 29174 22955 24 1.113 0.876
25 29492 33237 25511 25 1.127 0.865
26 32877 37468 28304 26 1.140 0.861
27 36343 41777 31348 27 1.150 0.863
28 39878 46093 34635 28 1.156 0.869
29 43508 50383 38164 29 1.158 0.877
30 47306 54686 41929 30 1.156 0.886
21 51403 59129 45968 31 1.150 0.894
32 55997 63948 50411 32 1.142 0.900
33 61348 69488 55409 33 1:133 0.903
34 67770 76191 61251 34 1.124 0.904
35 75615 84561 68238 35 1.118 0.902
36 85242 95107 76820 36 1.116 0.901
37 96979 108271 87333 37 1.116 0.901
38 111078 124339 100110 38 1.119 0.901
39 127665 143358 115258 39 1423 0.903
40 146705 165075 132615 40 1.125 0.904
41 167972 188946 151836 41 1.125 0.904
42 191065 214247 172221 42 1.121 0.901
43 215477 240364 193106 43 1.115 0.896
44 240758 267356 214306 44 1.110 0.890
45 266793 296893 236794 45 1.113 0.888
Avg: 1.104 0.901




Table A6. AxW1J, Series 1 PE tests, summary and comparisons (continued)

Axial Waterjet Pre-Test Estimate

AxWJ GB BH (Model 5662)

Pre-Test Pre-Test Pre-Test Exp3 AxW1 /
AxW] AxW] AxWJ/BSS AxWj Pre-Test
BB GB/BB* GB GB GB GB
BH BH BH BH BH BH
DES DES DES DES DES DES
Vs (kts) PE (hP) PE Ratio PE (hP) PE Ratio | Vs (kts) PE (hP) PE Ratio
14 5474 1.040 5691 1.207 14 5441 0.956
0.999 15 6558
16 8112 0.972 7888 1.191 16 7836 0.993
0.957 17 9300
18 11549 0.949 10961 1.207 18 10978 1.001
0.947 19 12893
20 15875 0.948 15050 1.244 20 15064 1.001
0.951 21 17497
22 21065 0.955 20117 1.265 22 20183 1.003
0.959 23 23102
24 27022 0.962 25996 1.255 24 26219 1.009
0.965 25 29492
26 34051 0.967 32913 1.242 26 32877 0.999
0.968 27 36343
28 42152 0.970 40867 1.235 28 39878 0.976
0.971 29 43508
30 50662 0.973 49279 1.224 30 47306 0.960
0.975 31 51403
32 58522 0.977 57171 1.179 32 55997 0.979
0.979 a3 61348
34 67561 0.981 66299 1.115 34 67770 1.022
35 74290 0.983 73028 1.092 35 75615 1.035
36 82966 0.984 81649 1.074 36 85242 1.044
37 93471 0.985 92035 1.053 37 96979 1.054
38 105867 0.985 104250 1.029 38 111078 1.065
39 120770 0.985 118913 1.010 39 127665 1.074
40 139092 0.985 136943 1.002 40 146705 1.071
0.985 41 167972
0.985 42 191065
0.984 43 215477
0.982 44 240758
0.976 45 266793
*GB/BB PE ratio determined during JHSS BSS Series 1 tests Avg: 1.014
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Table A7a. AxWI, Expl7, LDV nozzles installed, DES PE prediction

JHSS AxWJ GB Exp17 LDV Jets DES (PE from RT input with WS no skeg)

SHIP MODEL
LAMBDA 34121
LWL 979.4 ft 28703  ft
S (no Skeg) 96696 ft? 83055  ft?
WT 36491 LT 20006  Ibs
RHO 19905  (bf'sec ’yft * 19365  (Ibf'sec )t *
NU 1.2817E-05 ft */sec 1.0692E-05 ft */sec
Ca 0.0000
Vs PE FRICTIONAL POWER FN V-L 1000CR
knots HP KW HP KW
15.0 6636.3 4948.7 4010.8 2990.8 0.143 0.479 0.925
20.0 15354.4 114498 9189.2 6852.4 0.190 0.639 0.916
25.0 30465.9 22718.4 17487.3 13040.3 0.238 0.799 0.987
30.0 49613.9 36997.1 29590.7 22065.8 0.285 0.959 0.882
36.0 88007.9 65627.5 50082.1 37346.2 0.342 1.150 0.966
39.0 132308.4 98662.4 63101.4 47054.7 0.371 1.246 1.387
420 196524.9 146548.7 78157.6 58282.1 0.399 1.342 1.899

Table A7b. AxWJ appended (LDV nozzles), comparison to AxWJ bare hull and JHSS

baseline BSS fully appended
AxWJ with LDV Nozzles vs AxWJ BH AxWJ Appended vs BSS Appended .
Exp3 Exp17 Exp40 Exp17
AxW] AxW] BSS AxW]
Bare Hull LDVNOZ NOZ/BH Apnd w/Flap LDV NOZ
DES DES DES DES DES DES
Vs (kts) PE (hp) PE (hp) PE Ratio | Vs (kts) PE (hp) PE (hp) PE Ratio
15 6558 6636 1.012 15 7868 6636 0.843
20 15064 15354 1.019 20 16868 15354 0.910
25 29492 30466 1.033 25 31987 30466 0.952
30 47306 49614 1.049 30 53157 49614 0.933
36 85242 88008 1.032 36 96351 88008 0.913
39 127665 132308 1.036 39 141663 132308 0.934
42 191065 196525 1.029 42 209631 196525 0.937
Avg: 1.030 Avg: 0.918
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Table A12. AxWJ] Model 5662 resistance and powering measurement uncertainties

25 knot Ship Speed
Units Nominal Bias Precision  Uncertainty Four Shafts

Measurement Mean Ermor Error (units) (percent) (percent)

+ + + + t
Speed fi/sec 7.24 0.002 0.001 0.002 0.03 -
Resistance Ibf 15.15 0.059 0.036 0.069 0.46
INbd Prop Shaft Rate RPM  1484.21 0.009 0.911 0.911 0.06
OUTbd Prop Shaft Rate RPM  1483.23 0.009 1.234 1.234 0.08 0.07
INbd Shaft Thrust - combined Ibf 8.76 0.057 0.037 0.068 0.78 -
OUTDbd Shaft Thrust - combined Ibf 9.99 0.057 0.042 0.071 0.71 0.74
INbd Shaft Torque - combined Ibf-in 7.33 0.094 0.146 0.174 2.37 -
OUTDbd Shaft Torque - combined Ibf-in 6.55 0.094 0.079 0.123 1.88 212
INbd Shaft Power - combined hP 0.173 0.0022 0.0034 0.0041 237 -
OUTbd Shaft Power - combined hP 0.154 0.0022 0.0019 0.0029 1.88 213
36 knot Ship Speed

Units Nominal Bias Precision  Uncertainty Four Shafts

Measurement Mean Error Error (units) (percent) (percent)

+ + + + -
Speed f/sec 10.41 0.003 0.000 0.003 0.03 -
Resistance Ibf 29.75 0.063 0.082 0.103 0.35 -
INbd Prop Shaft Rate RPM  2053.83 0.011 2.407 2.407 0.12 -
OUTbd Prop Shaft Rate RPM  2053.12 0.011 1.860 1.860 0.09 0.10
INbd Shaft Thrust - combined Ibf 16.98 0.060 0.033 0.068 0.40 -
OUTbd Shaft Thrust - combined Ibf 18.49 0.060 0.061 0.085 0.46 0.43
INbd Shaft Torque - combined Ibf-in 12.97 0.096 0.172 0.197 1.52 -
OUTbd Shaft Torque - combined Ibf-in 12.43 0.096 0.182 0.206 1.66 1.59
INbd Shaft Power - combined hP 0.423 0.0031 0.0056 0.0064 1.52 -
OUTbd Shaft Power - combined hP 0.405 0.0031 0.0059 0.0067 1.66 1.59
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APPENDIX B

AxWJ Model 5662 Photographs

B-1



BIl.
B2.
B3.
B4.

AxWJ MODEL 5662 PHOTOGRAPHS Page
AxWJ Model 5662: construction and hardware installation
AxWJ Model 5662: Inlets covered for Bare HUll .......ooveevveveeieiiieiieeiiirceieeeeetneseeeeerraneeesesennaneeens B8

AxW] Model 5662: LDV nozzles installed, Inlets OPEN .....ciicuisiniimansssmsisssossissrisssesss B9
AxWJ Model 5662: Powering tests underway with and without LDV system operating
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